博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
POJ 3370 Halloween treats【抽屉原理】
阅读量:6258 次
发布时间:2019-06-22

本文共 2408 字,大约阅读时间需要 8 分钟。

题目链接:http://poj.org/problem?id=3370

Description

Every year there is the same problem at Halloween: Each neighbour is only willing to give a certain total number of sweets on that day, no matter how many children call on him, so it may happen that a child will get nothing if it is too late. To avoid conflicts, the children have decided they will put all sweets together and then divide them evenly among themselves. From last year's experience of Halloween they know how many sweets they get from each neighbour. Since they care more about justice than about the number of sweets they get, they want to select a subset of the neighbours to visit, so that in sharing every child receives the same number of sweets. They will not be satisfied if they have any sweets left which cannot be divided.

Your job is to help the children and present a solution.

Input

The input contains several test cases.

The first line of each test case contains two integers c and n (1 ≤ c ≤ n ≤ 100000), the number of children and the number of neighbours, respectively. The next line contains n space separated integers a1 , ... , an (1 ≤ ai ≤ 100000 ), where ai represents the number of sweets the children get if they visit neighbour i.

The last test case is followed by two zeros.

Output

For each test case output one line with the indices of the neighbours the children should select (here, index i corresponds to neighbour i who gives a total number of ai sweets). If there is no solution where each child gets at least one sweet print "no sweets" instead. Note that if there are several solutions where each child gets at least one sweet, you may print any of them.

Sample Input

4 51 2 3 7 53 67 11 2 5 13 170 0

Sample Output

3 52 3 4

题目大意:n个小朋友,拜访m家,每家会得到a[i]块糖,使得得到的糖数总和是n的倍数,输出拜访谁家。(这里未要求连续)

解题思路: 与POJ 2356几乎一样,n<=m, 不用考虑是否是连续的和。由于抽屉原理,最终都会至少有两个模值相同的数在一个抽屉中,不影响结果。
也就是说这题不存在无解的情况

代码如下:

View Code
#include
#include
int sum[100003], pla[100003];int main(){ int i, n, pp, j, m, a; while(scanf("%d%d", &n, &m)!=EOF) { if(n==0&&m==0) break; sum[0]=0, pp=0; memset(pla, 0, sizeof(pla)); for(i=1; i<=m; i++) { scanf("%d", &a); sum[i]=(sum[i-1]+a)%n; if(sum[i]==0) pp=i; } if(pp!=0) { for(i=1; i

 

转载于:https://www.cnblogs.com/Hilda/archive/2013/03/07/2948610.html

你可能感兴趣的文章
oracle数据类型
查看>>
MSSQL sum()计算expression转化为数据类型int时发生算术溢出错误解决
查看>>
oracle 11g rac 笔记(VMware 和esxi主机都可以使用)
查看>>
golang钉钉群机器人订阅自定义主题百度新闻
查看>>
Backend-as-a-Service (BaaS) for Efficient Software Development
查看>>
php的curl获取https加密协议请求返回json数据进行信息获取
查看>>
检查HP服务器硬盘状态脚本
查看>>
Java基础之函数
查看>>
NAT负载均衡_ftp
查看>>
kafka集群搭建
查看>>
Mongodb大数据语法大全
查看>>
Linux的简单SHELL
查看>>
bat清理日志文件
查看>>
python——“破解”私有属性
查看>>
httpclient请求域名自定义域名指向ip
查看>>
安装 MySQL报错 -bash: mysql: command not found
查看>>
RedHat6.4使用CentOS163yum源在线安装及更新软件
查看>>
BUG: soft lockup - CPU#0 stuck for 22s! [kworker/0:2:27076]
查看>>
亿美软通亮相亿邦未来零售大会,斩获智能商业创新奖
查看>>
sed awk 笔记(二)
查看>>